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Chapter 7 - NEUTRON SCATTERING THEORY 
 
 

Elements of neutron scattering theory are described here. The scattering amplitude, 
scattering lengths and cross sections are introduced and discussed.  
 
 
1. SOLUTION OF THE SCHRODINGER EQUATION 
 
Neutron scattering theory involves quantum mechanics tools such as the solution of the 
Schrodinger equation even though the scattering problem is not a quantum mechanical 
problem (no bound states are involved). A simple solution of the Schrodinger equation 
involving perturbation theory is presented here. This is to so-called Born Approximation 
method.  

 
Figure 1: Incident plane wave and scattered spherical wave. 
 
The Schrodinger equation is expressed as follows: 
 

iiii EH ψ=ψ        (1) 
 ψ=ψ sEH  
 VHH i += . 
 
H is the full Hamiltonian operator, Hi is the incident neutron kinetic energy operator and 
V is the neutron-nucleus interaction potential. Ei and Es are the eigenvalue energies for 
the incident neutron and for the scattered neutron. Ψi and Ψ are the eigenfunctions for the 
incident (non-interacting) neutron and for the interacting neutron-nucleus pair. 
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Ei is the incident neutron kinetic energy and ki is its incident wavenumber. Ψi is the 
solution of the homogeneous differential equation: 
 

 0)r()k(
m2

)r()EH( i
2

i
2

2

iii =Ψ+∇−=Ψ−
rhr .   (3) 

 
The solution is an incident plane wave )r.kiexp()r( ii

rr
=Ψ  using vector notation. The full 

differential equation is written as: 
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Its solution is an integral equation of the form: 
 

 ∫ Ψ−⎟
⎠
⎞

⎜
⎝
⎛

π
+Ψ=Ψ )'r()'r(V)'rr(G'rd

2
m)r()r( 2i

rrrrr

h

rr   (5) 

 
Here )'rr(G

rr
−  is a Green’s function satisfying the following differential equation: 
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ks is the scattered neutron wavenumber. Its solution is a spherical outgoing wave of the 
form: 
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In order to verify this result, the following relations valid in spherical coordinates are 
used: 
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Therefore: 
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Vector 'r

r
 is within the sample and r
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 is far from the sample so that r >> r’ and therefore 

one can approximate 
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Here, the scattered neutron wavevector sk

r
 has been defined as rrkk ss
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The general solution of the Schrodinger equation is an integral equation that can be 
solved iteratively through the expansion: 
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Keeping only the first integral term corresponds to the first Born approximation which 
can be presented in the form: 
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The scattering amplitude f(θ) has been defined as: 
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is kkQ
rrr

−=  is the scattering vector. f(θ) is the Fourier transform of the interaction 
potential V(r’). f(θ) has been assumed to be independent of the azimuthal angle.  
 
The first Born approximation applies to thermal/cold neutrons neutron scattering 
corresponding to "s wave" scattering (i.e., corresponding to a zero orbital angular 
quantum number). This includes all of neutron scattering except for neutron reflectivity 
whereby higher order terms in the Born expansion have to be included. Neutron 
reflectometry involves refraction (not diffraction).  
 
Q
r

characterizes the probed length scale and its magnitude is given for elastic scattering in 
terms of the neutron wavelength λ and scattering angle θ as Q = (4π/λ) sin(θ/2). For 
small angles (SANS), it is simply approximated by Q = 2πθ/λ. Since Q is the Fourier 
variable (in reciprocal space) conjugate to scatterer positions (in direct space), 
investigating low-Q probes large length scales in direct space and vice versa.  
 
In summary, the solution of the Schrodinger equation is an incident plane wave plus a 
scattered spherical wave multiplied by the scattering amplitude.  
 
 
2. SCATTERING CROSS SECTIONS 
 
The microscopic differential scattering cross section is defined here. It represents the 
fraction of neutrons scattered into solid angle dΩ with a scattering angle θ.  

 
Figure 2: Representation of neutrons scattered with angle θ inside a solid angle dΩ.  
 
Consider incident neutrons of wavenumber ki and scattered neutrons of wavenumber ks.  
The incident neutron flux also called current density (neutrons/cm2.s) is given by: 
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Here * represents the complex conjugate and )r.kiexp( ii
rr

=Ψ  is the incident plane wave. 
Performing the simple operation Ψ=Ψ∇ iki
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scattered neutron flux: 
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 have units of velocity 

(speed). In order to obtain the standard units for a current density (neutrons/cm2.s), one 
has to divide by the volume formed by a unit area and the distance travelled by the 
neutrons per second.  
 
The differential neutron scattering cross section is defined as: 
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This is the ratio of the neutron flux scattered in dΩ over the incident neutron flux. Within 
the first Born approximation (also called the Fermi Golden Rule): 
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This cross section contains information about what inhomogeneities are scattering and 
how they are distributed in the sample. The microscopic scattering cross section is its 

integral over solid angles: ∫ Ω⎟
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Given the (atomic) number density N/V (number of scattering nuclei/cm

3
) in a material, a 

macroscopic cross section is also defined as: Σs = (N/V) σs (units of cm
-1

). SANS data are 
often presented on an "absolute" macroscopic cross section scale independent of 
instrumental conditions and of sample volume. It is given by dΣs/dΩ = (N/V) dσs/dΩ. 
 
 
3. THE BRA-KET NOTATION 
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The <bra|ket> approach is useful for simplifying notation. Consider the following 
definitions: 
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Define the following closure relations: 
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The integrations are over all direct r

r
 or reciprocal k

r
 space. The scattering amplitude is 

expressed as: 
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Using the <bra|ket> notation, f(θ) can be also manipulated to the form: 
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The scattering cross section is therefore given in terms of the transition probability 
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This result ignores the effect of spin interactions and therefore does not apply to 
scattering from magnetic systems. 
 
 
4. SIMPLE MODEL FOR NEUTRON SCATTERING LENGTHS 
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A simple argument is used here in order to appreciate the origin of the scattering length 
(Squires, 1978). Consider a neutron of thermal/cold incident energy Ei being elastically 
scattered from a nucleus displaying an attractive square well potential -Vo (note that Vo 
>> Ei). Recall the Schrodinger equation for this simplest potential.  
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The Schrodinger equation can be solved in 2 regions (inside and outside of the well 
region). 
 

 
Figure 2: Neutron scattering from the quantum well of a nucleus. 
 
Outside of the well region (i.e., for r > R) where V(r) = 0, the solution has the form: 
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Here b is the scattering length and for elastic scattering ks = ki = i2mE /h. Note that in 
this case, the scattering amplitude is simply f(θ) = -b. Note also that the incident plane 

wave has been averaged over orientation: 
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Inside of the well (r < R) where V(r) = -V0 the solution is of the form: 
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In another form: 
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gives a first order estimate of the scattering length b as a function of the radius of the 
spherical nucleus R and the depth of the potential well V0.  
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Figure 3: Solution of the Schrodinger equation subject to the boundary conditions.  
 
Due to the steep variation of the solution to the above transcendental equation, adding 
only one nucleon (for example, going from H to D) gives a very large (seemingly 
random) variation in b. The scattering length can be negative like for H-1, Li-7, Ti-48, 
Ni-62, etc. The H and D nuclei have been added to the figure knowing their scattering 
lengths (bH = -0.374 fm and bD = 6.671 fm) and assuming RH = 1 fm and RD = 2 fm. The 
Fermi (1 fm = 10-13 cm) is a convenient unit for scattering lengths. The neutron-nucleus 
interaction potential can be estimated for the case of H as V0 = 30 MeV. These are huge 
energies compared to the thermal neutron kinetic energy of 25 meV.  
 
The scattering length itself can be complex if absorption is non negligible: b = bR – ibI.  
Neutron absorption is small for most organic materials. It has been neglected completely 
in the simple model discussed above.  
 
Since no nucleus is completely free, bound scattering lengths should be used instead: 
bbound = bfree (A + 1)/A, where A is the atomic number. Free and bound scattering lengths 
are substantially different only for low mass elements such as hydrogen.  
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5. MEASUREMENTS OF NEUTRON SCATTERING LENGTHS 
 
Note that the index of refraction n is related to the material atomic density ρ (atoms/cm3), 
the neutron scattering length b, and the neutron wavelength λ as: 
 

 2

2π
ρb1n λ−= .       (30) 

 
The scattering length b can be measured by measuring the index of refraction n using 
optical methods. Note that most materials have an index of refraction less than one for 
neutrons and greater than one for light.  
 
Neutron interferometry methods are another way of measuring scattering lengths.  
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QUESTIONS 
 
1. What is the neutron scattering length of an element? 
2. What is the scattering cross section of an element? How does it relate to the scattering 
length? 
3. What is the differential scattering cross section? 
4. What is the strength of typical neutron-nucleus interaction potentials? What is a typical 
neutron kinetic energy?  
5. Write down the Schrodinger equation.  
6. What is the first Born approximation? What type of neutron scattering is not well 
modeled by the first Born approximation?  
7. What is a simple description of the solution of the Schrodinger equation in terms of 
waves? 
 
 
ANSWERS 
 
1. The neutron scattering length of an element represents the apparent “size” of this 
element during scattering. 
2. The scattering cross section of an element is the apparent area that it offers during 
scattering. The scattering cross section σ is related to the scattering length b as σ = 4πb2.  
3. The differential scattering cross section is the cross section per unit solid angle dσ/dΩ.  
4. Typical neutron-nucleus interaction potentials are of order MeV. Typical neutron 
kinetic energies are of order meV (thermal neutron energy is 25 meV).  
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5. The Schrodinger equation is [
2m

2h−
∇

2
 + V(r)] ψ(r) = E ψ(r) where the first term is the 

kinetic energy, the second term is the potential energy, V(r) is the neutron-nucleus 
interaction potential, E is the so-called system energy and ψ(r) is the so-called 
eigenfunction. This equation can also be written as Hψ = Eψ where H is the system 
Hamiltonian.   
6. The first Born approximation corresponds to keeping only the first term in the 
expansion solution of the Schrodinger equation. The first Born approximation does not 
model reflectivity well.  
7. The solution of the Schrodinger equation corresponds to an incident plane wave and a 
scattered spherical wave.  
 
 


